Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Desalination and Water Treatment ; 288:140-150, 2023.
Article in English | Web of Science | ID: covidwho-20244861

ABSTRACT

Like all public utility, swimming pools had been treated with special procedures during the COVID19 pandemic. In addition to the basic rules (social distance + hand disinfection + masks), applicable to all citizens, the managers of swimming pools were obliged to reduce the number of swimmers and to increase the effects of water treatment. Monitoring, control and rapid response to unfavourable changes in the quality of swimming pool water are the basis for minimizing the risk of disease transmission or exposure of bathers to pathogens. The main purpose of this work is to analyse and compare the quality of swimming pool water in a municipal outdoor swimming pool complex, before (2018-2019) and during the COVID-19 pandemic (2020-2021). Water samples taken from a paddling pool for children (CP), a recreational pool (RP), and a sports pool (SP) were analysed. The results of the research, based on real case studies, were compared with the documents on water quality in swimming pools in force at the time. An analysis was carried out to determine the relationships between swimming pool water quality before and during the COVID-19 pandemic. The tested parameters determining the quality of water were physico-chemical parameters (temperature, pH, redox, and bacteriological parameters (colony forming units CFU of Pseudomonas aeruginosa, Escherichia coli, Legionella sp.). Based on the results of the analysis of the parameters mentioned-above, the validation of the procedures applied during the COVID-19 hazard and their impact on the quality of swimming pool water were evaluated. The results of the pool water quality tests were discussed with particular emphasis on disinfection by-products (THM and combined chlorine). Detailed analysis showed better water quality in the first year of the pandemic (2020) compared to 2018-2019 (before COVID-19) and 2021 (the second year of COVID-19 pandemic). The following parameters were found to be significantly different: THM (before 0.069 mg/L and during 0.034 mg/L), free chlorine (before 0.86 mg/L and during 0.66 mg/L), and redox potential (before 667 and during 713 mV).

2.
J Environ Sci (China) ; 129: 229-239, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2246566

ABSTRACT

Chlorine-based disinfectants are widely used for disinfection in wastewater treatment. The mechanism of the effects of chlorinated disinfection by-products on cyanobacteria was unclear. Herein, the physiological effects of chloroacetic acid (CAA) on Microcystis aeruginosa (M. aeruginosa), including acute toxicity, oxidative stress, apoptosis, production of microcystin-LR (MC-LR), and the microcystin transportation-related gene mcyH transcript abundance have been investigated. CAA exposure resulted in a significant change in the cell ultrastructure, including thylakoid damage, disappearance of nucleoid, production of gas vacuoles, increase in starch granule, accumulation of lipid droplets, and disruption of cytoplasm membranes. Meanwhile, the apoptosis rate of M. aeruginosa increased with CAA concentration. The production of MC-LR was affected by CAA, and the transcript abundance of mcyH decreased. Our results suggested that CAA poses acute toxicity to M. aeruginosa, and it could cause oxidative damage, stimulate MC-LR production, and damage cell ultrastructure. This study may provide information about the minimum concentration of CAA in the water environment, which is safe for aquatic organisms, especially during the global coronavirus disease 2019 pandemic period.


Subject(s)
COVID-19 , Cyanobacteria , Microcystis , Humans , Microcystis/metabolism , Disinfection , Microcystins/toxicity
3.
Huan Jing Ke Xue ; 43(2): 878-886, 2022 Feb 08.
Article in Chinese | MEDLINE | ID: covidwho-1643943

ABSTRACT

In order to reveal the pollution characteristics and risk levels of DBPs in typical drinking water sources in Wuhan under the COVID-19 pandemic, 26 sampling sites were selected in typical drinking water sources in Wuhan. N,N-diethyl-1,4-phenylenediamine spectrophotometry and gas chromatograph-micro-cell electron capture detector (GC-µECD) methods were used to detect residual chlorine disinfectants and DBPs in water, respectively, and their health and ecology risks were assessed. The results showed that free chlorine or total residual chlorine were detected in 16 of the 26 water samples, and the maximum concentration was 0.04 mg·L-1, which exceeded the limit of the surface water standard in China. The concentration of residual chlorine was higher in sampling sites near the outfall of a municipal sewage plant. There were 34 types of DBPs measured in 10 sampling sites, and 24 types of substances were detected with the detection rate of 10.00%-100.00%. The ρ (total DBPs) was in the range of 0.11-104.73 µg·L-1, with an average value of 7.26 µg·L-1. The concentration of chloroform was the highest among all the DBPs, ranging from 9.98 µg·L-1 to 11.15 µg·L-1, with an average value of 10.47 µg·L-1. The concentration of 2-bromo-2-iodoacetamide was the lowest, ranging from ND-0.11 µg·L-1, with an average value of 0.01 µg·L-1. The overall detection level of the DBPs area was low in this study area, and the result of the health risk assessment showed that the DBPs had no carcinogenic or non-carcinogenic health risks to human body. However, the results of the ecological risk assessment showed that chloroform presented a high ecological risk to aquatic organisms.


Subject(s)
COVID-19 , Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , Disinfectants/analysis , Disinfection , Drinking Water/analysis , Halogenation , Humans , Pandemics , Risk Assessment , SARS-CoV-2 , Water Pollutants, Chemical/analysis
4.
Sci Total Environ ; 805: 150380, 2022 Jan 20.
Article in English | MEDLINE | ID: covidwho-1415774

ABSTRACT

An indole derivative umifenovir (Arbidol) is one of the most widely used antiviral drugs for the prevention and treatment of COVID-19 and some other viral infections. The purpose of the present study was to shed light on the transformation processes of umifenovir in municipal wastewater, including disinfection with active chlorine, as well as to assess the levels of the antiviral drug and its metabolites entering and accumulating in natural reservoirs under conditions of the SARS-CoV-2 pandemic. The combination of high-performance liquid chromatography with electrospray ionization high-resolution mass-spectrometry and inductively coupled plasma mass spectrometry was used for tentative identification and quantification of umifenovir and its transformation products in model reaction mixtures and real samples of wastewater, river water, biological sludge and bottom sediments taken at the wastewater treatment plant in Arkhangelsk, a large cultural and industrial center at the Russian North. Laboratory experiments allowed identifying fifteen bromine-containing transformation products, forming at the initial stages of the chlorination and fourteen classic volatile and semi volatile disinfection by-products with bromoform as the dominant one. Chlorinated derivatives are only the minor disinfection by-products forming by substitution of alkylamine group in the aromatic ring. The schemes of umifenovir transformation in reactions with dissolved oxygen and sodium hypochlorite are proposed. Two established primary transformation products formed by oxidation of the thioether group to sulfoxide and elimination of thiophenol were detected in noticeable concentrations in the wastewater together with their precursor. The level of umifenovir reached 1.3 mg kg-1 in the sludge and municipal wastewater treat contained 1 µg L-1 of that drug, while its removal during biological wastewater treatment was about 40%. Pronounced accumulation of umifenovir and its transformation products in biological sludge and bottom sediments of natural reservoirs may be a source of the future secondary pollution of the environment.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Antiviral Agents , Humans , Indoles , Pandemics , SARS-CoV-2 , Wastewater , Water Pollutants, Chemical/analysis
5.
Environ Sci Technol ; 55(15): 10534-10541, 2021 08 03.
Article in English | MEDLINE | ID: covidwho-1270648

ABSTRACT

Intensified disinfection of wastewater during the COVID-19 pandemic increased the release of toxic disinfection by-products (DBPs). However, studies relating to the ecological impacts of DBPs on the aquatic environment remain insufficient. In this study, we comparatively investigated the toxicities and ecological risks of 17 typical, halogenated DBPs to three trophic levels of organisms in the freshwater ecosystem, including phytoplankton (Scenedesmus sp.), zooplankton (Daphnia magna), and fish (Danio rerio). Toxicity of DBPs was found to be species-specific: Scenedesmus sp. was the most sensitive to haloacetic acids, while D. magna was the most sensitive to haloacetonitriles and trihalomethanes. Specific to each DBP, toxicities were also related to their classes and substituted halogen atoms. Damage to photosystems and oxidative stress served as the potential mechanisms for DBPs toxicity to microalgae. The different sensitivities to DBPs indicate that a battery of bioassays with organisms at different trophic levels is necessary to determine the ecotoxicity of DBPs. Furthermore, the ecological risks of DBPs were assessed by calculating the risk quotients (RQs) based on toxicity data from multiple bioassays. The cumulative RQs of DBPs to all the organisms were greater than 1.0, indicating high ecological risks of DBPs in wastewater effluents.


Subject(s)
COVID-19 , Disinfectants , Water Pollutants, Chemical , Water Purification , Animals , Aquatic Organisms , Disinfectants/toxicity , Disinfection , Ecosystem , Halogenation , Humans , Pandemics , SARS-CoV-2 , Trihalomethanes , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
6.
Sci Total Environ ; 770: 145344, 2021 May 20.
Article in English | MEDLINE | ID: covidwho-1065585

ABSTRACT

The high chlorine dosages in wastewater treatment plants during the COVID-19 pandemic may result in increased formation of disinfection by-products (DBPs), posing great threat to the aquatic ecosystem of the receiving water body and the public health in the downstream area. However, limited information is available on the effect of biological wastewater treatment processes on the formation of CX3R-type DBPs. This study investigated the effect of oxidation ditch (OD) and anaerobic-anoxic-oxic (AAO), two widely used biological wastewater treatment processes, on the formation of five classes of CX3R-type DBPs, including trihalomethanes (THMs), haloacetic acids (HAAs), haloacetaldehydes (HALs), haloacetonitriles (HANs) and halonitromethanes (HNMs), during chlorination. Experimental results showed that biological treatment effectively reduced the dissolved organic carbon (DOC) and UV254, while it increased the dissolved organic nitrogen (DON), and therefore the ratio of DON/DOC. In addition, increases in the contents of soluble microbial product- and humic acid-like matters, and the transformation of high molecular weight (MW) fractions in the dissolved organic matter into low MW fractions were observed after OD and AAO processes. Although biological treatment effectively decreased the formation of Cl-THMs, Cl-HAAs, Cl-HANs and Cl-HNMs, the formation of DBCM, DBAA, BDCAA, DBCAA, DCAL, TCAL and DBAN (where C = chloro, B = bromo, D = di, T = tri) all increased significantly, due to the increased formation reactivity. Moreover, biological treatment increased the ratio of bromide/DOC and bromine incorporation into THMs, HAAs and DHANs except for HALs and THANs. Different from previous studies, this study revealed that biological treatment increased the formation of some DBPs, especially brominated DBPs, despite the efficient removal of organic matters. It provides insights into the DBP risk control in wastewater treatment, particularly during the COVID-19 pandemic.

7.
Chem Eng J ; 405: 126893, 2021 Feb 01.
Article in English | MEDLINE | ID: covidwho-952653

ABSTRACT

The unprecedented global spread of the severe acute respiratory syndrome (SARS) caused by SARS-CoV-2 is depicting the distressing pandemic consequence on human health, economy as well as ecosystem services. So far novel coronavirus (CoV) outbreaks were associated with SARS-CoV-2 (2019), middle east respiratory syndrome coronavirus (MERS-CoV, 2012), and SARS-CoV-1 (2003) events. CoV relates to the enveloped family of Betacoronavirus (ßCoV) with positive-sense single-stranded RNA (+ssRNA). Knowing well the persistence, transmission, and spread of SARS-CoV-2 through proximity, the faecal-oral route is now emerging as a major environmental concern to community transmission. The replication and persistence of CoV in the gastrointestinal (GI) tract and shedding through stools is indicating a potential transmission route to the environment settings. Despite of the evidence, based on fewer reports on SARS-CoV-2 occurrence and persistence in wastewater/sewage/water, the transmission of the infective virus to the community is yet to be established. In this realm, this communication attempted to review the possible influx route of the enteric enveloped viral transmission in the environmental settings with reference to its occurrence, persistence, detection, and inactivation based on the published literature so far. The possibilities of airborne transmission through enteric virus-laden aerosols, environmental factors that may influence the viral transmission, and disinfection methods (conventional and emerging) as well as the inactivation mechanism with reference to the enveloped virus were reviewed. The need for wastewater epidemiology (WBE) studies for surveillance as well as for early warning signal was elaborated. This communication will provide a basis to understand the SARS-CoV-2 as well as other viruses in the context of the environmental engineering perspective to design effective strategies to counter the enteric virus transmission and also serves as a working paper for researchers, policy makers and regulators.

8.
Sci Total Environ ; 741: 140445, 2020 Nov 01.
Article in English | MEDLINE | ID: covidwho-610875

ABSTRACT

The outbreak of coronavirus infectious disease-2019 (COVID-19) pneumonia raises the concerns of effective deactivation of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in medical wastewater by disinfectants. In this study, we evaluated the presence of SARS-CoV-2 viral RNA in septic tanks of Wuchang Cabin Hospital and found a striking high level of (0.5-18.7) × 103 copies/L after disinfection with sodium hypochlorite. Embedded viruses in stool particles might be released in septic tanks, behaving as a secondary source of SARS-CoV-2 and potentially contributing to its spread through drainage pipelines. Current recommended disinfection strategy (free chlorine ≥0.5 mg/L after at least 30 min suggested by World Health Organization; free chlorine above 6.5 mg/L after 1.5-h contact by China Centers for Disease Control and Prevention) needs to be reevaluated to completely remove SARS-CoV-2 viral RNA in non-centralized disinfection system and effectively deactivate SARS-CoV-2. The effluents showed negative results for SARS-CoV-2 viral RNA when overdosed with sodium hypochlorite but had high a level of disinfection by-product residuals, possessing significant ecological risks.


Subject(s)
Coronavirus Infections , Disinfection , Pandemics , Pneumonia, Viral , Wastewater , Betacoronavirus , COVID-19 , China , Humans , Motor Vehicles , RNA, Viral/analysis , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL